برق
الکتریسیته
برق[۱] یا الکتریسیته،[۱](به یونانی: ήλεκτρον)، مجموعهای از پدیدههای طبیعیست که به حضور و جریان بار الکتریکی وابسته است. الکتریسیته آثار معروف متنوعی چون آذرخش، الکتریسیته ساکن، القای الکترومغناطیسی و جریان الکتریکی دارد. به علاوه، الکتریسیته اجازه تولید و دریافت تابشهای الکترومغناطیسی مانند موجهای رادیویی را مراهم میآورد.
در برگه ۳۲ از سک "المعرب م الکلام الاعجمی علی حروف المعجم" وشته مصور الجوالیقی، ۵۴۰-۵۶۰ هجری، دمشق آمدهاست که: برق از ریشه پهلوی فرک [فره] (به معنی انرژی و روشنایی) است.
در الکتریسیته، بارهای الکتریکی میدانهای الکترومغناطیسی را تولید میکنند و این میدانها سایر بارها را تحت تاثیر قرار میدهند. الکتریسیته به چند دلیل مختلف فیزیکی اتفاق میافتد:
- بار الکتریکی: خاصیت برخی ذرات زیراتمی که فعل و انفعالات الکترومغناطیسی آنان را مشخص میکند. مواد باردار، میدان الکترومغناطیسی تولید میکنند و همچنین تحت تاثیر سایر میدانها قرار میگیرند.
- میدان الکتریکی (الکترواستاتیک را ببینید): یک نوع ساده از میدانهای الکترومغناطیسی است که به وسیله بار الکتریکی ساکن یا متحرک تولید میشود. میدان الکتریکی به بارهای مجاور خود، نیرو وارد میکند.
- پتانسیل الکتریکی: ظرفیت یک میدان الکتریکی برای انجام کار بر روی یک بار الکتریکی که واحد آن ولت است.
- جریان الکتریکی: حرکت یا جریان ذرات باردار که واحدش آمپر است.
- آهنربای الکتریکی: بارهای متحرک یک میدان مغناطیسی تولید میکنند. جریانهای الکتریکی میدانهای مغناطیسی تولید میکنند و میدانهای مغناطیسی متغییر جریانهای الکتریکی تولید میکنند.
در مهندسی برق از الکتریسیته برای این منظورها استفاده میشود:
-
توان الکتریکی: استفاده از جریان الکتریکی برای تامین انرژی وسایل برقی را گویند.
تاریخچه[ویرایش]
نوشتار اصلی: تاریخ الکتریسیتهالکتریسیته برگرفته شده از کلمه الکتروکوس است که نام یونانی نوعی ماهی است، که قادر به ایجاد شوک الکتریکی میباشد. خیلی قبلتر از هر اطلاعی از الکتریسیته، مردم از شوکهای ماهیهای الکتریکی آگاهی داشتند. نوستههای مصر باستانکه از سده ۲۸ (پیش از میلاد) باقی ماندهاند، نام این گونهها را تندرگرهای نیل گذاشتند، و آنها را محافظ سایر ماهیها میدانستند. هزاران سال قبل، ماهیهای الکتریکی به وسیله یونان باستان، امپراطوری روم و فلاسفه و پزشکان عربی گزارش شد. چند نویسنده باستانی، مانند پلنیوس و اسکریبونیوس لارگوس به وجود تاثیرات بیحس کننده شوکهای الکتریکی ناشی از گربهماهیهای الکتریکی و سپرماهیسانان گواهی دادند، و دریافتند که این شوکها به وسیله اشیای هادی انتقال مییابند. به بیمارانی که از بیماریهایی چون نقرس یا سردرد رنج میبردند، توصیه میشد که ماهی الکتریکی را لمس کنند تا شاید نیرو قدرتمندش آنها را درمان کند. تاریخ الکتریسیته به ایران و بینالنهرین باستان در دوره اشکانیان برمیگردد و اولین باتری اختراع شده را به اشکانیان نسبت میدهد که به خاطر محل یافتش به باتری بغدادی شهرت یافتهاست..[۲][۳] اولین و نزدیکترین روش کشف برای شناسایی آذرخش و الکتریسیته، به اعراب نسبت داده میشود، که قبل از قرن ۱۵ام، واژه عربی “رعد” را به آذرخش اطلاق کردند.
الکتریسیته تا سال ۱۶۰۰ به مدت چند هزار سال تنها به عنوان یک کنجکاوی ذهنی قلمداد میشد، تا اینکه ویلیام گیلبرت، دانشمند انگلیسی، مطالعات دقیقی پیرامون الکتریسیته و مغناطیس انجام داد. او تاثیر سنگ آهنربا را به وسیله مالش کهرباشناسایی کرد. او واژه electricus را به خاصیت جذب اجسام کوچک، پس از مالش، نسبت داد. پس از این رویداد، واژه الکتریسیته و الکتریکی برای اولین در کتاب سیودودکسیا اپیدمیکا، نوشته توماس براون چاپ شد.
بعدها افرادی چون اتو وان گریکه، رابرت بویل، استفن گری و چارلز فرانکویس این مسیر را ادامه دادند. در قرن ۱۸ام، بنجامین فرانکلین تحقیقات گستردهای پیرامون الکتریسیته انجام داد. او با فروش داراییهای خود، هزینه کارش را فراهم کرد. مشهور است که او در سال ۱۷۵۲ یک کلید فلزی را به انتهای یک بادبادک مرطوب وسل کرد و آن را در آسمان طوفانی به هوا فرستاد. جرقههای متوالی که از کلید به پشت دستش میپریدند، نشان دادند که آذرخش قطعا پدیدهای الکتریکی در طبیعت است. او همچنین رفتار ظاهرا متناقض بطری لیدن را به عنوان وسیلهای برای ذخیره مقادیر زیاد بار الکتریکی توصیف کرد.
در سال ۱۷۹۱، لوییجی گالوانی اکتشاف خود در زمینه بیوالکتریک را منتشر کرد. او نشان داد که الکتریسیته واسطه ایست که به وسیله آن سیگنالها از یاختههای عصبی به ماهیچهها انتقال مییابند. در قرن ۱۸ام، باتری الساندرو ولتا، یا پیل ولتایی، که از روی هم قرار گرفتن لایههای منتاوب روی و مس ساخته شده بود، برای دانشمندان منبع انرژی قابل اعتمادتری نسبت به ژنراتورهای الکترواستاتیکی قدیمی فراهم کرد. کشف الکترومغناطیس، یا همان وحدت پدیدههای الکتریکی و مغناطیسی، بین سالهای ۱۸۱۹-۱۸۲۰ به وسیله هانس کریستین اورستد و آندره ماری آمپر اتفاق افتاد. در سال۱۸۲۱، مایکل فارادی موتور الکتریکی را اختراع کرد و در سال ۱۸۲۷ گئورگ زیمون اهم جریانهای الکتریکی را از نظر ریاضی مورد بررسی قرار داد. در سالهای ۱۸۶۱ و ٬۱۸۶۲جیمز کلرک ماکسول در کتاب درباره خطوط فیزیکی نیرو، الکتریسیته و مغناطیس را به طور قطعی به هم مرتبط ساخت.
درحالی که در اوایل قرن ۱۹ام، پیشرفتهای سریعی در برق اتفاق افتاد، اواخر قرن ۱۹ام، شاهد بزرگترین پیشرفت در مهندسی برق بود. با تلاش افرادی چون الکساندر گراهام بل، اتو بلاثی، توماس ادیسون، گالیله فراری، الیور هویساید، انیوس جدلیک،چارلز آلگرنون پارسونز، ویلیام تامسون، ارنست فون زیمنس، جوزف سوان، نیکولا تسلا و جرج وستینگهاوس، الکتریسیته از حس کنجکاوی علمی به ابزاری مهم در زندگی مدرن و نیروی محرکی برای انقلاب صنعتی دوم تبدیل شد.
در سال ٬۱۸۸۷ هاینریش هرتز الکترودهایی را کشف کرد که وسیله پرتوی فرابنفش روشن میشدند و جرقههای الکتریکی را به سادگی ایجاد میکردند. در سال ٬۱۹۰۵ آلبرت اینشتین مقالهای منتشر کرد که در آند با توصیف دادههای آزمایشگاهی، اثر فوتوالکتریک را به عنوان نتیجه انرژی نور نشان داد و ثابت کرد که این انرژی به وسیله بستههای کوانتمی، حمل میشود و به الکترونها انرژی میدهد. این اکتشاف منجر به انقلاب کوانتمی شد. اینشتین در سال ٬۱۹۲۱ به خاطر کشف اثر فوتوالکتریکجایزه نوبل فیزیک گرفت. امروزه، از اثر فوتوالکتریک در حسگرهای نور و در نتیجه صفحههای خورشیدی استفاده میشود که اخیرا برای تولید الکتریسیته در سطح تجاری به کار میروند.
اولین وسیله حالت جامد ردیاب سبیل گربهای بود که برای اولین بار در دهه ۱۹۳۰ در گیرندههای رادیویی به کار رفت. یک سیم سبیل گربهای به یک بلور جامد (مانند بلور ژرمانیوم) متصل است تا با استفاده از تاثیر نقطه تماس، یک سیگنال رادیویی را شناسایی کند. در جز حالت جامد، جریان الکتریکی به عناصر و ترکیبات جامد وابسته است که به منظور پر کردن کاستی الکترونهاست که حفره الکترونی نامیده میشود. مفهوم حفرههای خالی و پر با توجه به فیزیک کوانتومی قابل درک است. ماده سازنده نیز اغلب یک نیمرسانا بلوریست.
وسایل حالت جامد با اختراع ترانزیستور در سال ۱۹۴۷، ارتقا یافتند. وسایل حالت جامد رایج عبارتند از: ترانزیستورها، تراشههای ریزپردازنده و حافظه دسترسی تصادفی. نوع ویژهای از حافظهها که حافظه فلش نام دارد در یواسبی فلش درایوها به کار میروند و به تازگی، درایوهای حالت جامد جایگزین سیستم چرخش مکانیکی دیسک مغناطیسی در دیسک سخت شده است. وسایل حالت جامد در دهههای ۱۹۵۰ و ۱۹۶۰ محبوبیت فراوانی کسب کردند، که مصادف با تغییر از تکنولوژی لامپ خلاء بهدیودهای نیمرسانا، ترانزیستورها، مدار مجتمع و الئیدی بود.
مفاهیم[ویرایش]
بار الکتریکی[ویرایش]
وجود بار اکلتریکی سبب افزایش نیرو الکترواستاتیکی میشود: بارها به یکدیگر نیرو اعمال میکنند، نیرویی که در گذشته شناخته شده ولی علتش نامعلوم بود. یک گوی سبک که از یک نخ آویزان است، هنگام تماس با میله شیشهای باردار که تحت مالش با پارچه قرار گرفته، میتواند باردار شود. اگر گوی دیگری نیز با همان میله شیشهای باردار شود، گوی قبلی را دفع میکند: بار تلاش میکند تا دو گوی را از هم دور کند. دو گوی باردار شده به وسیله میله پلاستیکی نیز یکدیگر را دفع میکنند. اما، اگر یک گوی به وسیله میله شیشهای و گوی دیگر به وسیله یک میله پلاستیکی باردار شود این دو گوی یکدیگر را جذب میکنند. شارل آگوستن دو کولن این پدیده را در قرن هیجدهم کشف کرد. او استنباط کرد که بار الکتریکی خود را به دو شکل نمایان میکند. این کشف به قانون مشهوری منجر شد: اجسام با بار همنام یکدیگر را دفع و اجسام با بار غیر همنام یکدیگر را جذب میکنند.
این نیرو ذرات باردار را تحت تاثیر قرار میدهد، بنابرین بار تمایل دارد تا جای امکان به طور مساوی در یک سطح هادی پخش شود. اندازه نیرو الکترومغناطیسی، چه جاذبه باشد و چه دافعه، با استفاده از قانون کولن بدست میآید. مطابق این قانون، نیرو با حاصلضرب بار دو ذره در مجذور معکوس فاصله بین آن دو متناسب است. نیروی الکترومغناطیس بسیار نیرومند است و در واقع بعد از نیروی هستهای قوی نیرومندترین نیرو به شمار میآید، اما بر خلاف آن این نیرو در تمام فواصل اعمال میشود. در مقایسه با نیروی گرانش، نیرو الکترومغناطسی که دو الکترون را دفع میکند، ۱۰۴۲ بار قویتر از نیروی جاذبه گرانشی بین آن دو است.
مطالعات نشان میدهند که منشا بار انواع مخصوصی از ذرات زیراتمی هستند که ویژگی بار الکتریکی را دارند. بار الکتریکی سبب تقویت نیروی الکترومغناطیسی میشود، که یکی از چهار نیروی بنیادی به حساب میآید. آشناترین حاملان بار الکتریکیالکترونها و پروتونها هستند. تحقیقات حاکی از وجود قانون بقای بار الکتریکی هستند و این بدان معناست که در یک سیستم ایزوله بدون توجه به هر تغییری که در سیستم روی دهد، مقدار بار کلی آن ثابت میماند. در یک سیستم ممکن است بار از جسمی به جسم دیگر منتقل شود که این اتفاق میتواند به صورت تماس مستقیم باشد، یا با عبور از یک ماده رسانا مانند سیم، روی دهد. واژه الکتریسیته ساکن به وجود بار روی یک جسم، گفته میشود که اغلب هنگام مالش در ماده غیرهمسان به یکدیگر ایجاد میشود و بار از یکی به دیگری انتقال مییابد.
بار الکترون و پروتون مخالف همند، بنابرین مقدار بار ممکن است مثبت یا منفی باشد. طبق قرارداد باری که به وسیله الکترونها حمل میشود منفی و باری که به وسیله پروتونها حمل میشود مثبت است، این موضوع از تلاشهای بنجامین فرانکلینسرچشمه گرفته است. اندازه بار را با علامت Q نشان میدهند که واحدش کولن است. هر الکترون حدودا بار −۱٫۶۰۲۲×۱۰−۱۹ کولن را حمل میکند. بار پروتون نیز معادل الکترون بوده ولی علامتش مثبت میباشد، یعنی ۱٫۶۰۲۲×۱۰−۱۹ کولن. بار تنها به وسیله ماده جذب نمیشود، بلکه در پادماده نیز، هر پادذره باری هم اندازه و مخالف ذره مربوطهاش تحمل میکنند.
بار را میتوان به وسیله ابزار گوناگونی سنجید، یک ابزار جدید برای سنجش بار الکتروسکوپ نام دارد، که اگرچه هنوز در کلاسهای درسی به کار میرود، جایگزین برق سنج الکترونیکی شده است.
جریان الکتریکی[ویرایش]
حرکت بارهای الکتریکی را جریان الکتریکی گویند که شدت آن با واحد آمپر سنجیده میشود. جریان میتواند شامل حرکت هر ذره بارداری باشد؛ اکثرا الکترونها هستند ولی هر بار در حال حرکتی یک جریان به حساب میآید.
مطابق قرارداد تاریخی، جریان مثبت مسیری را که هر بار مثبت شامل شدهای طی کند، میپیماید یا از مثبت ترین بخش یک مدار به منفی ترین بخشش انتقال مییابد. جریانی که از این الگو پیروی کند، جریان قراردادی نام دارد. بنابرین حرکت الکترونهای دارای بار مخالف در یک مدار الکتریکی، یکی از آشناترین اشکال جریان، در خلاف جهت حرکت الکترونها، مثبت فرض میشود. اما، بر اساس شرایط، یک جریان الکتریکی میتواند شامل یک جریان از ذرات باردار، هم در یک مسیر و هم در هر دو مسیر باشد. قرارداد مثبت به منفی برای سادهسازی این شرایط وضع شده است.
فرآیندی که در آن جریان الکتریکی از مواد عبور میکند با واژه رسانایی الکتریکی مورد استفاده قرار میگیرد، و طبیعت آن با ذرات باردار و مادهای که به وسیله آن جابجا میشوند، متفاوت است. مثالهایی برای جریان الکتریکی شامل رسانای فلزی، که الکترونها در رسانایی مانند فلزات جریان مییابند و برقکافت میشود، که در آن یونها (اتمهای باردار) در مایعات یا پلاسماهایی مانند جرقههای الکتریکی جریان مییابند. در حالی که ذرات به خودی خود کندند، و گاهی اوقات با سرعت رانش میانگین یک میلیمتر در ثانیه پیش میروند، میدان الکتریکی که آنها را پیش میبرد، سرعت آنها را به نزدیکی سرعت نور میرساند و سیگنالهای الکتریکی را قادر میسازد که با سرعت سیمها را بپیمایند.
جریان دارای چند تاثیر قابل مشاهده است که به طور تاریخی ابزاری برای شناسایی وجودش به شمار میرود. جریان میتواند آب را تجزیه کند و این موضوع در سال ۱۸۰۰ به وسیله ویلیام نیکولسون و آنتونی کارلیسله کشف شد و امروزه آن را با نامبرقکافت میشناسیم. در سال ۱۸۳۳، مایکل فارادی راه آنان را به خوبی ادامه داد. جریان در یک مقاومت الکتریکی سبب تجمع گرما در مقاومت میشود. در سال ۱۸۴۰، این اثر را جیمز ژول از نظر ریاضی مورد مطالعه قرار داد. یکی از مهمترین اکتشافات مرتبط با جریان به طور اتفاقی در سال ۱۸۲۰ به وسیله هانس کریستین اورستد صورت گرفت. این اتفاق زمانی روی داد که هنگام آماده کردن سخنرانی خود، او مشاهده کرد که جریان در یک سیم سوزن قطبنما را به حرکت در میآورد. اوالکترومغناطیس را که یک تعامل اساسی بین الکتریسیته و مغتاطیس بود، کشف کرد. میزان انتشار الکترومغناطیسی تولید شده به وسیله قوس الکتریکی برای تولید تداخل الکترومغناطیسی کافیست که میتواند برای صدمه دیدن وسایل مجاور، مضر باشد.
در وسایل مهندسی یا خانگی جریان به دو دسته مستقیم و متناوب تقسیم میشود. این واژهها به تغییرات جریان در بازه زمانی اشاره دارد. جریان مستقیم، برای مثال از یک باتری گرفته میشود و بیشتر لوازم الکترونیکی بدان نیاز دارند. این جریان یک سویه بوده که از قسمت مثبت مدار به قسمت منفی جریان مییابد. اگر این جریان به وسیله الکترونها حمل شود، جهت جریان در خلاف جهت گفته شده خواهد بود. جریان متناوب جریانیست که به طور مکرر جهت جریانش تغییر میکند. این تغییر اغلب به شکل یک موج سینوسی است. بنابرین، جریان متناوب دارای پالس عقب و جلو بوده و در یک رسانا بدون حرکت بارها جریان تولید میکند. ارزش میانگین زمانی یک جریان متناوب صفر است، اما این جریان انرژی را در یک مسیر میرساند و سپس تغییر جهت میدهد. جریان متناوب تحت تاثیر ویژگیهای الکتریکی در شرایط پایدار جریان مستقیم، مانند القاوری و ظرفیت خازنی قرار میگیرد. این ویژگیها زمانی مهم میشوند که شدت جریان گذرا باشد.
میدان الکتریکی[ویرایش]
مفهوم میدان الکتریکی توسط مایکل فارادی مطرح شد. میدان الکتریکی در اطراف جسم باردار شکل میگیرد و به تمام ذرات باردار درون میدان نیرو وارد میکند. میدان الکتریکی بین دو بار، مشابه میدان جاذبه بین دو جرم عمل میکند و مانند آن در فضای بینهایت گسترش میباید و یک رابطه مجذور معکوس با فاصله نشان میدهد. اما، یک فرق اساسی در این بین وجود دارد. میدان جاذبه همیشه در نقش جذب کننده عمل میکند و میکوشد تا دو جسم را به یکدیگر برساند، در حالی که میدان الکتریکی میتواند هم سبب جذب شود و هم دفع. از آن جا که اجسام بزرگ مانند سیارهها دارای بار خالص نیستند، اغلب میدان الکتریکی در اطراف آنها صفر است. لذا با وجود اینکه نیرو جاذبه بسیار ضعیفتر است، در گیتی نیروی غالب به شمار میآید.
میدان الکتریکی به طور عمومی در فضا متغییر است و شدت آن در هر نقطه با نیرویی مشخص میشود که به وسیله هر بار اندک ثابتی احساس میگردد. بار فرضی که ذره آزمون نام دارد، بسیار کوچک است تا میدان الکتریکی آن با میدان الکتریکی اصلی تداخل نداشته باشد و همچینی ثابت است تا از تاثیر میدانهای مغناطیسی جلوگیری کند. از آن جا که میدان الکتریکی با واحد نیرو شناسایی میشود، و نیرو نیز یک بردار اقلیدسی است، درنتیجه یک میدان مغناطیسی یک بردار است که همشدت دارد و هم مسیر. در واقع این یک میدان برداری است.
مطالعه میدان الکتریکی حاصل از بارهای ثابت الکتریسیته ساکن نام دارد. میدان به وسیله مجموعهای از خطوط فرضی نمایش داده میشود که در هر نقطه از میدان مسیر آن را نمایش میدهند. این مفهوم به وسیله فارادی مطرح شد، که واژه خطوط میدانی که او بیان کرده بود، هنوز نیز کاربرد دارد. خطوط میدان مسیرهایی هستند که یک بار مثبت نقطهای هنگامی که بدان نیرو وارد میشود، آن مسیرها را طی میکند. به هر حال، آنها یک مفهوم ذهنی هستند و واقعیت فیزیکی ندارند و میدان به فضای بین خطوط نفوذ دارد. خطوط میدان ناشی از بارهای ساکن چند ویژگی کلیدی دارند: اولا، آنها از بارهای مثبت سرچشمه میگیرند و به بارهای منفی ختم میشوند. ثانیا، باید با زاویهای قایم وارد اجسام رسانا شوند، ثالثا، هرگز یکدیگر را قطع نمیکنند.
یک جسم رسانای توخالی تمام بارش را در سطح خارجی خود نگه میدارد. در نتیجه میدان در تمام نقاط داخل جسم صفر است. این موضوع نقش اصلی را در قفس فاراده بازی میکند، این قفس یک پوسته فلزی رساناست که فضای داخلی خود را از تاثیرات الکتریکی خارجی جدا میکند. نقش الکتریسیته ساکن در طراحی آیتمهای وسایل ولتاژ بالا پر رنگ است. برای شدت میدان الکتریکی که یک جسم متوسط میتواند تحمل کند، محدودیتی وجود دارد. فراتر از این نکته، شکست الکتریکی رخ میدهد و قوس الکتریکی سبب ایجاد صاعقه بین دو قسمت باردار میشود. برای مثال، هوا تمایل دارد با عبور دادن قوس الکتریکی و ایجاد شکاف، شدت میدان الکتریکی را به بیش از ۳۰ کیلوولت بر سانتیمتر برساند. در شکافهای بزرگتر، شدت شکست ضعیفتر است و شاید یک کیلوولت در هر سانتیمتر باشد. مهمترین رویداد قابل مشاهده آن، آذرخش است، و زمانی اتفاق میافتد که با افزایش ستونهای هوا، بارها در ابرها جدا شوند و میدان الکتریکی هوا را افزایش دهند تا از حد تحمل، تجاوز کند. ولتاژ آذرخشهای بزرگ میتواند به بزرگی ۱۰۰ مگاولت باشد و انرژی به بزرگی ۲۵۰کیلووات ساعت را تخلیه کند.
شدت میدان تا حد زیادی تحت تاثیر اجسام رسانای نزدیک میدان قرار دارد و در اشیای نوک تیز تشدید میشود. از این موضوع در برقگیرها استفاده میشود که آذرخش، با استفاده از تیر نوک تیز مهار میشود تا ساختمان تحت محافظت، از صدمه دیدن در امان بماند.
پتانسیل الکتریکی[ویرایش]
مفهوم پتانسیل الکتریکی با میدان الکتریکی ارتباط نزدیکی دارد. به بار کوچکی که در یک میدان الکتریکی قرار میگیرد، نیرو وارد میشود، و برای حرکت دادن این بار بر خلاف نیرویی که بدان وارد میشود، به کار نیازمندیم. پتانسیل الکتریکی در هر نقطه میزان انرژی لازم برای آوردن بار آزمون از فاصله بینهایت دور به آن نقطه است. واحد آن اغلب ولت است، و یک ولت، پتانسیلی است که با استفاده از یک ژول کار میتوان یک بار یک کولنی را از فاصله بینهایت دور به یک نقطه آورد. توصیح پتانسیل اگرچه رسمی است، کاربرد چندان ندارد، و مفهوم کاربردیتر، اختلاف پتانسیل الکتریکی است که به انرژی لازم برای به حرکت در آوردن بار آزمون بین دو نقطه مشخص گفته میشود. میدان الکتریکی درای ویژگی مخصوصی است و آن اینست که پایستار است، و این بدان معناست که به مسیری که بار میپیماید وابسته نیست: تمام مسیرهای بین دو نقطه به انرژی یکسانی نیاز دارند، و بنابرین یک مقدار منحصر به فرد برای اختلاف پتانسیل مورد نیاز است. یکای ولت به عنوان واحد اندازهگیری و توصیف اختلاف پتانسیل الکتریکی یا ولتاژ شناخته میشود.
برای اهداف کاربردی، بهتر است نقطهای را به عنوان مبدا انتخاب کنیم و پتانسیل را با توجه به آن اندازهگیری و مقایسه کنیم. مبدا خیلی مناسب میتواند زمین الکتریکی باشد، که فرض بر اینست که در تمام نقاط پتانسیلش یکسان است. نام نقطه مبدازمین الکتریکی است. زمین به عنوان منبا بی پایان از بارهای معادل مثبت و منفی فرض میشود و به همین دلیل از نظر الکتریکی خنثی و غیر قابل باردار شدن است.
پتانسیل الکتریکی یک کمیت اسکالر است، به همین دلیل تنها اندازه دارد و فاقد جهت میباشد. پتانسیل الکتریکی مشابه بلندی است: همانطور که یک جسم رها شده به دلیل اختلاف ارتفاع به وسیله میدان جاذبه به سمت پایین سقوط میکند، بار الکتریکی نیز به دلیل اختلاف پتانسیل ناشی از میدان مغناطیسی سقوط میکند. همانطور که در نقشههای موجود، خطوط کانتوری نقاط هم ارتفاع را نشان میدهند، میتوان مجموعه خطوطی که نقاط هم پتانسیل را نشان میدهند (با نام خطوط همپتانسیل شناخته میشود)، پیرامون یک جسم دارای بار الکترومغناطیسی رسم کرد. خطوط همپتانسیل با تمام خطوط نیرو زاویه قائم میسازند. همچنین آنها با سطح رسانای الکتریکی موازی اند، در غیر این صورت نیرویی تولید میشود که حاملان بار را به سطح پتانسیل میبرد.
میدان الکتریکی به طور رسمی به عنوان نیرو وارده به واحد بار تعریف میشود، اما مفهوم پتانسیل اجازه استفاده از تعریفی مفیدتر و معادل را میدهد: میدان الکتریکی گرادیان مکانی پتانسیل الکتریکیست. واحدش اغلب ولت بر متر بوده، جهت بردار میدان، بزرگترین شیب پتانسیل و جایی است که خطوط همپتانسیل در نزدیکترین حالت قرار دارند.
آهنربای الکتریکی[ویرایش]
کشف اورستد در سال ۱۸۲۱ در این باره که پیرامون سیمهای حامل جریان الکتریکی میدان مغناطیسی وجود دارد، نشان داد که بین الکتریسیته و مغناطیس رابطهای مستقیم وجود دارد. بعلاوه، به نظر میرسید این فعل و انفعال با نیروی جاذبه و الکتریکی (دو نیروی طبیعت که تا آن زمان شناخته شده بودند)، متفاوت است. نیرویی که به سوزن قطبنما وارد میشد آن را نه به سیم حامل جریان نزدیک و نه آن را دور میکرد، اما با آن زاویه قائم میساخت. واژههای نسبتا ناآشنای اورستد این بود: "تضاد الکتریکی به روشی چرخشی عمل میکند." این نیرو همچنین به جهت جریان نیز بستگی داشت، یعنی اگر جهت جریان برعکس میشد، جهت نیرو نیز معکوس میگشت.
اورستد اکتشاف خود را به طور کامل متوجه نشد، اما مشاهده کرد که آثار متقابل بودند: جریان به آهنربا نیرو و آهنربا به جریان نیرو وارد میکنند. بعدها آندره ماری آمپر این پدیده را بررسی کرد. او کشف کرد که دو سیم موازی حامل جریان به یکدیگر نیرو وارد میکنند. دو سیم که جهت جریانشان یکسان است، یکدیگر را جذب میکنند و دو سیم که جهت جریانشان مخالف هم است یکدیگر را دفع میکنند. این فعل و انفعال به واسطه میدان مغناطیسی ایجاد میشود که هر جریان تولید میکند و اساستعریف جهانی آمپر را شکل میدهد.
رابطه بین میدانهای مغناطیسی و جریان بسیار مهم است، زیرا سبب شد تا مایکل فارادی در سال ۱۸۲۱، موتور الکتریکی را اختراع کند. موتور تکقطبی فارادی از یک آهنربا قرار گرفته داخل مخزن جیوه تشکیل میشد. جریان به وسیله سیمی آویزان از محور بالای آهنربا و غوطهور در جیوه برقرار میشد. آهنربا نیرویی مماسی بر سیم وارد میکرد و برای اینکه جریان برقرار شود، آن را پیرامون آهنربا میپیچاند.
آزمایشهای فارادی در سال ۱۸۳۱ نشان داد در سیمی که عمود بر یک میدان مغناطیسی حرکت میکند، بین دو نقطه نهایی آن اختلاف پتانسیل ایجاد میشود. آنالیزهای متعاقب این فرایند، که با نام القای الکترومغناطیسی مشهور است، او را قادر ساخت تا قانون مشهور القای فارادی را بیان کند، قانونی که مطابق آن اختلاف پتانسیل مدار بسته، متناسب با تغییرات شار مغناطیسی حلقه است. استفاده از این کشف، او را قادر ساخت تا اولین مولد الکتریکی را در سال ۱۸۳۱ اختراع کند، مولدی که انرژی مکانیکی دیسک مسی در حال چرخش را به انرژی الکتریکی تبدیل میکرد. دیسک فارادی هیچ استفاده عملی نداشت، ولی نشان داد که میتوان با استفاده از مغناطیس نیروی الکتریکی تولید کرد، امکانی که میتوان آن را با پی روی از کارهای او بهبود بخشید.
الکتروشیمی
- الکترونیک: در حالی که با مدارهای الکتریکی در ارتباط است، شامل اجزای فعال الکتریکی از جمله لامپهای خلا، ترانزیستورها، دیودها و مدارهای مجتمع میباشد.
پدیدههای الکتریکی از گذشته دور مورد مطالعه قرار گرفتهاند، اما پیشرفت در درک نظری تا قرنهای هفدهم و هیجدهم به آرامی اتفاق افتاد. حتی آن زمان نیز کاربرد الکتریسیته اندک بود، و این موضوع تا آواخر قرن نوزدهم و زمانی که مهندسان قادر به استفاده از برق در مناطق صنعتی و مسکونی شوند، ادامه یافت. پیشرفت سریع در تکنولوژی الکتریکی صنعت و جامعه را دگرگون ساخت. کاربرد گسترده الکتریسیته سبب شد که از آن در موارد کاربردی بدون محدودیت شامل حمل و نقل، گرمایش، روشنایی، مخابرات و محاسبات استفاده شود. اکنون الکتریسیته پایههای جامعه صنعتی مدرن را تشکیل میدهد.